Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(8): 4184-4194, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350030

RESUMO

Cranberries contain proanthocyanidins with different interflavan bond types and degrees of polymerization. These chemical differences may impact the metabolism of proanthocyanidins by the intestinal microbiome. In our previous study, we found that healthy microbiomes produced higher concentrations of the phenolic acid metabolites 5-(3',4'-dihydroxyphenyl)-g-valerolactone and 3-hydroxyphenylacetic acid from the cranberry extract in comparison to ulcerative colitis (UC) microbiomes ex vivo. To understand this difference, LC-ESI-MS/MS was utilized to characterize the metabolism of the precursor proanthocyanidins. Healthy microbiomes metabolized procyanidin A2, procyanidin B2, and procyanidin dimeric intermediates but not A-type trimers, to a greater extent than UC microbiomes. The metabolism of procyanidin A2 and procyanidin B2 by fecal microorganisms was then compared to identify their derived phenolic acid metabolites. 5-(3',4'-Dihydroxyphenyl)-g-valerolactone and 3-hydroxyphenylacetic acid were identified as unique metabolites of procyanidin B2. Based on these results, the metabolism of procyanidin B2 contributed to the differential metabolism observed between healthy and UC microbiomes.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Hidroxibenzoatos , Microbiota , Fenilacetatos , Proantocianidinas , Vaccinium macrocarpon , Proantocianidinas/química , Vaccinium macrocarpon/química , Espectrometria de Massas em Tandem , Disbiose , Colite Ulcerativa/tratamento farmacológico , Frutas/química , Extratos Vegetais/química
2.
Food Chem ; 374: 131076, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915366

RESUMO

Purple sweet potatoes (PSP) are widely used as color enhancers in food formulations. Investigations on the stability of PSP polyphenolics during simulated digestion and subsequent absorption in a Caco-2 cell monolayer model were accomplished. Measures of bioactive activities were also assessed in vitro. PSP whole polyphenolic extracts as a control (WC) were compared to isolates enriched in anthocyanins (AC) or non-anthocyanin phenolics (NAP). Anthocyanins were also alkali-hydrolyzed to remove acylated moieties. Compounds were subjected to simulated gastro-intestinal digestions where non-hydrolyzed anthocyanins showed higher stability compared to alkali-hydrolyzed. For many alkali-hydrolyzed anthocyanins, the transport through a Caco-2 cell monolayer was reduced. PSP fractions significantly increased the generation of reactive oxygen species in HT-29 cells and was suppressive in the CCD-18Co cells while down-regulated mRNA expression of inflammatory markers. Results indicate the importance of PSP composition and the effects of acyl moieties on anthocyanin stability and functional properties for food colors.


Assuntos
Ipomoea batatas , Solanum tuberosum , Antocianinas , Células CACO-2 , Digestão , Humanos , Extratos Vegetais
3.
Food Funct ; 12(24): 12751-12764, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34847216

RESUMO

The microbiome plays a major role in polyphenol metabolism, producing metabolites that are bioavailable and potentially more bioactive than the compounds from which they are derived. However, the microbiome can vary among individuals, and especially for those with co-morbidities, such as ulcerative colitis. In subjects with ulcerative colitis, the consequence of a 'dysbiotic' microbiome is characterized by decreased diversity of microbiota that may impact their capability to metabolize polyphenols into bioavailable metabolites. On this premise, the microbiome metabolism of cranberry polyphenols between healthy individuals and those with ulcerative colitis was compared in vitro. Fecal samples from volunteers, with or without diagnosed ulcerative colitis, were cultured anaerobically in the presence of cranberry polyphenols. The resulting metabolites were then quantified via LC-ESI-MS/MS. 16S rRNA metagenomics analysis was also utilized to assess differences in microbiota composition between healthy and ulcerative colitis microbiomes and the modulatory effects of cranberry polyphenols on microbiota composition. Healthy microbiomes produced higher (p < 0.05) concentrations of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone and 3-hydroxyphenylacetic acid in comparison to ulcerative colitis microbiomes. Additionally, healthy microbiomes contained a higher (p < 0.05) abundance of Ruminococcaceae, which could explain their ability to produce higher concentrations of cranberry polyphenol metabolites. Health status and the presence of cranberry polyphenols also significantly impacted the production of several short-chain and branched-chain fatty acids. These results suggest that efficiency of polyphenol metabolism is dependent on microbiota composition and future works should include metabolite data to account for inter-individual differences in polyphenol metabolism.


Assuntos
Colite Ulcerativa/metabolismo , Microbioma Gastrointestinal , Polifenóis/metabolismo , Vaccinium macrocarpon/metabolismo , Adolescente , Adulto , Idoso , Colo/metabolismo , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Adulto Jovem
4.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066494

RESUMO

Mango is rich in polyphenols including gallotannins and gallic acid, among others. The bioavailability of mango polyphenols, especially polymeric gallotannins, is largely dependent on the intestinal microbiota, where the generation of absorbable metabolites depends on microbial enzymes. Mango polyphenols can favorably modulate bacteria associated with the production of bioactive gallotannin metabolites including Lactobacillus plantarum, resulting in intestinal health benefits. In several studies, the prebiotic effects of mango polyphenols and dietary fiber, their potential contribution to lower intestinal inflammation and promotion of intestinal integrity have been demonstrated. Additionally, polyphenols occurring in mango have some potential to interact with intestinal and less likely with hepatic enzymes or transporter systems. This review provides an overview of interactions of mango polyphenols with the intestinal microbiome, associated health benefits and underlying mechanisms.


Assuntos
Anti-Inflamatórios/farmacologia , Intestinos/efeitos dos fármacos , Fígado/enzimologia , Polifenóis/química , Animais , Fibras na Dieta/análise , Ácido Gálico/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Taninos Hidrolisáveis/metabolismo , Inflamação , Mangifera , Camundongos , Extratos Vegetais/química , Prebióticos , Ratos
5.
Nutr Res ; 75: 85-94, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32109839

RESUMO

Inflammatory bowel disease (IBD) characterized by chronic intestinal inflammation and intestinal microbial dysbiosis present a major risk factor in the development of colorectal cancer. Previously, dietary polyphenols from mango (Mangifera indica L.) such as gallotannins and gallic acid have been shown to mitigate intestinal inflammation and carcinogenesis, as well as modulate intestinal microbial composition. To further translate findings from preclinical models, we hypothesized that mango polyphenols possess anti-inflammatory and microbiome-modulatory activities and may improve symptoms of IBD, reduce biomarkers for inflammation and modulate the intestinal microbiome when administered as an adjuvant treatment in combination with conventional medications in patients with mild to moderate IBD. In this study, ten participants received a daily dose of 200-400 g of mango pulp for 8 weeks (NCT02227602). Mango intake significantly improved the primary outcome Simple Clinical Colitis Activity Index (SCCAI) score and decreased the plasma levels of pro-inflammatory cytokines including interleukin-8 (IL-8), growth-regulated oncogene (GRO) and granulocyte macrophage colony-stimulating factor (GM-CSF) by 16.2% (P = .0475), 25.0% (P = .0375) and 28.6% (P = .0485), all factors related to neutrophil-induced inflammation, respectively. Mango intake beneficially altered fecal microbial composition by significantly increasing the abundance of Lactobacillus spp., Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus lactis, which was accompanied by increased fecal butyric acid production. Therefore, enriching diet with mango fruits or potentially other gallotannin-rich foods seems to be a promising adjuvant therapy combined with conventional medications in the management of IBD via reducing biomarkers of inflammation and modulating the intestinal microbiota.


Assuntos
Quimiocina CXCL1/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-8/sangue , Mangifera/química , Polifenóis/administração & dosagem , Adolescente , Adulto , Idoso , Dieta , Fezes/microbiologia , Feminino , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lactobacillus/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
6.
Food Res Int ; 129: 108812, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036936

RESUMO

Extraction of polyphenolic metabolites from blood fractions can be challenging since compound recovery can be limited by chemical structure, polarity, and protein-binding affinity of analytes. Gallic acid and its metabolites exhibit particularly low recoveries from plasma and can lead to an underestimation of their bioavailability from foods. A modified method to extract free gallic acid and its metabolites from human plasma aided by sodium dodecyl sulfate and acidified methanol (SDS-MeOH) was applied to extract free gallic acid and its metabolites from human plasma after a single consumption of 400 g of mango (cv. Ataulfo) pulp by 10 healthy male and female subjects. The use of SDS-MeOH facilitated extraction of significantly (p < 0.05) more pyrogallol, free gallic acid, 4-O-methylgallic acid, and ethyl gallate with recovery rates exceeding 80% in standard recovery from human blood plasma when compared to conventional methods that rely on solvent extraction or solid phase extraction. The method was reproducible and precise for standards from 50 to 500 µg/L. In pharmacokinetic plasma samples five predominant metabolites of gallic acid were tentatively characterized by HPLC-MS and absorption kinetics evaluated over 8 h for catechol-O-sulfate, 4-O-methylgallic acid-3-O-sulfate, and pyrogallol-O-sulfate, methylpyrogallol-O-sulfate, and 4-O-methylgallic acid with AUC0-8h of 9520 ± 3370, 6030 ± 1310, 5990 ± 1690, 4020 ± 1040, and 2790 ± 1190 µg/L h respectively. Plasma extraction was rapid and reproducible with superior recovery rates compared to conventional methods when evaluating polar phenolic metabolites.


Assuntos
Hidroxibenzoatos/sangue , Mangifera/química , Metanol/química , Dodecilsulfato de Sódio/química , Feminino , Ácido Gálico/análogos & derivados , Ácido Gálico/sangue , Ácido Gálico/farmacocinética , Humanos , Masculino
7.
ACS Omega ; 4(13): 15628-15635, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572864

RESUMO

Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius ("açaí") originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates.

8.
Mol Nutr Food Res ; 63(9): e1800937, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30908878

RESUMO

SCOPE: Intestinal microbial metabolites from gallotannins (GT), including gallic acid (GA) and pyrogallol (PG), may possess potential anti-obesogenic properties. Lactobacillus plantarum (L. plantarum) found in the intestinal microbiome encodes for enzymatic activities that metabolize GT into GA and PG. Anti-obesogenic activities of orally administered GT in the presence or absence of L. plantarum is examined in gnotobiotic mice fed a high-fat diet (HFD). METHODS AND RESULTS: Germ-free (GF) C57BL/6J mice are divided into three groups, GF control, GF gavaged with GT, and mice colonized with L. plantarum and gavaged with GT. Compared to the control, GT decreases the expressions of lipogenic genes (e.g., fatty acid synthase (FAS)) in epididymal white adipose tissue and increases thermogenic genes (e.g., nuclear factor erythroid-2-like 1 (Nfe2l1)) in interscapular brown adipose tissue. Intestinal colonization with L. plantarum enhances these effects, and mice colonized with L. plantarum exhibit lower levels of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), leptin and plasma insulin. CONCLUSIONS: Results indicate that GT and L. plantarum reduce HFD-induced inflammation, insulin resistance, and promote thermogenesis in adipose tissue potentially through the activity of GT-metabolizing bacterial enzymes yielding absorbable bioactive GT metabolites. These findings imply the potential role of prebiotic-probiotic interactions in the prevention of diet-induced metabolic disorders.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Taninos Hidrolisáveis/farmacologia , Lactobacillus plantarum , Probióticos/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/fisiologia , Administração Oral , Animais , Biomarcadores/metabolismo , Carboxiliases/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Citocinas/metabolismo , Vida Livre de Germes , Taninos Hidrolisáveis/administração & dosagem , Taninos Hidrolisáveis/química , Lactobacillus plantarum/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Paniculite/tratamento farmacológico , Paniculite/metabolismo , Termogênese/fisiologia
9.
Mol Nutr Food Res ; 63(2): e1800512, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427574

RESUMO

SCOPE: This human clinical pilot trial investigated pharmacokinetics of gallotannin-metabolites and modulation of intestinal microbiota in healthy lean and obese individuals after 6 weeks of daily mango consumption. METHODS AND RESULTS: Participants are divided into three groups: Lean Mango (LM: n = 12; BMI = 22.9 kg m-2 ), Obese Mango (OM: n = 9; BMI = 34.6 kg m-2 ), and Lean Control (LC: n = 11; BMI = 22.1 kg m-2 ). LM and OM consumed 400 g of mango per day for 6 weeks. LC consumed mango only on Days 0 and 42. After 6 weeks, LM experienced increased systemic exposure (AUC0-8h ) to gallotannin-metabolites, 1.4-fold (p = 0.043). The greatest increase is 4-O-methyl-gallic acid, 3.3-fold (p = 0.0026). Cumulative urinary excretion of gallotannin-metabolites significantly increased in LM and OM, but not LC. For OM, qPCR data show increased levels of tannase-producing Lactococcus lactis and decreased levels of Clostridium leptum and Bacteroides thetaiotaomicron, bacteria associated with obesity. LM experienced an increased trend of fecal levels of butyric (1.3-fold; p = 0.09) and valeric acids (1.5-fold; p = 0.056). Plasma endotoxins showed a decreased trend in LM and OM. CONCLUSION: Continuous mango intake significantly increased systemic exposure to gallotannin- metabolites and induced an increased trend for fecal short-chain fatty acids in lean but not obese individuals. This pharmacokinetic discrepancy may result in BMI-associated reduced gallotannin-derived health benefits.


Assuntos
Índice de Massa Corporal , Microbioma Gastrointestinal , Taninos Hidrolisáveis/metabolismo , Mangifera , Obesidade/metabolismo , Adulto , Ácidos Graxos Voláteis/biossíntese , Fezes/química , Feminino , Humanos , Masculino , Mangifera/química , Obesidade/microbiologia , Fenóis/análise , Reação em Cadeia da Polimerase
10.
Food Chem ; 266: 405-414, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30381205

RESUMO

Anthocyanin-rich cherries are known for preventing/decreasing risk factors associated with obesity; however, the specific benefits exerted by cherry non-anthocyanin phenolics are not clear. Obese diabetic (db/db) mice fed a diet supplemented with anthocyanin-depleted cherry powder (cherry) were compared to db/db (obese) or lean counterparts (lean) fed a control isocaloric diet for 12 weeks. The reduced plasma interleukin (IL)-6 and improved liver health may be mediated by cherry fibre and non-anthocyanin phenolics. Benefits for liver health included reduction of lipids and protein carbonyls, and modulation of peroxisome proliferator-activated receptor (PPAR)δ mRNA to resemble levels in lean. Lack of plasma antilipidemic, improvement of antioxidant defenses, and PPARα/γ mRNA modulation in liver suggest cherry anthocyanins specific benefits. This is the first study to elucidate in vivo the potential benefits of cherry non-anthocyanin phenolics for diabetes-induced liver disorders and the importance of choosing processing technologies that preserve anthocyanins and health benefits of whole cherries.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Fígado/efeitos dos fármacos , PPAR delta/metabolismo , Fenóis/farmacologia , Animais , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Prunus avium/química
11.
Food Funct ; 9(6): 3097-3103, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29850709

RESUMO

Açaí (Euterpe oleracea Mart.) berries, characterized by high polyphenol concentrations (predominantly anthocyanins), have demonstrated anti-inflammatory and anti-diabetic activities. The study objective was to determine the modulation of lipid and glucose-metabolism, as well as oxidative stress and inflammation, by an açaí-beverage (containing 1139 mg L-1 gallic acid equivalents of total polyphenolics) in 37 individuals with metabolic syndrome (BMI 33.5 ± 6.7 kg m-2) who were randomized to consume 325 mL twice per d of a placebo control or açaí-beverage for 12 weeks. Anthropometric measurements, dietary intake, and blood and urine samples were collected at baseline and after 12 weeks of consumption. Two functional biomarkers, plasma level of interferon gamma (IFN-γ) and urinary level of 8-isoprostane, were significantly decreased after 12 weeks of açaí consumption compared to the placebo control (p = 0.0141 and 0.0099, respectively). No significant modification of biomarkers for lipid- and glucose-metabolism was observed in this study. Findings from this small pilot study provide a weak indication that the selected dose of açaí polyphenols may be beneficial in metabolic syndrome as only two biomarkers for inflammation and oxidative stress were improved over 12 weeks. Follow-up studies should be conducted with higher polyphenol-doses before drawing conclusions regarding the efficacy of açaí polyphenols in metabolic syndrome.


Assuntos
Euterpe/química , Glucose/metabolismo , Síndrome Metabólica/dietoterapia , Extratos Vegetais/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Sucos de Frutas e Vegetais/análise , Humanos , Metabolismo dos Lipídeos , Masculino , Síndrome Metabólica/imunologia , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo , Projetos Piloto , Adulto Jovem
12.
Mol Nutr Food Res ; 62(12): e1701034, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733520

RESUMO

SCOPE: Chronic constipation is a common gastrointestinal condition associated with intestinal inflammation and considerably impaired quality of life, affecting about 20% of Americans. Dietary fiber and laxatives aid in its treatment but do not fully address all symptoms, such as intestinal inflammation. Mango (Mangifera indica L.), a fiber- and polyphenol-rich fruit may provide anti-inflammatory effects in constipation. METHODS AND RESULTS: The 4 week consumption of mango fruit (300 g) or the equivalent amount of fiber is investigated in otherwise healthy human volunteers with chronic constipation who are randomly assigned to either group. Blood and fecal samples and digestive wellness questionnaires are collected at the beginning and end of the study. Results show that mango consumption significantly improve constipation status (stool frequency, consistency, and shape) and increase gastrin levels and fecal concentrations of short chain fatty acid (valeric acid) while lowering endotoxin and interleukin 6 concentrations in plasma. CONCLUSION: In this pilot study, the consumption of mango improves symptoms and associated biomarkers of constipation beyond an equivalent amount of fiber. Larger follow-up studies would need to investigate biomarkers for intestinal inflammation in more detail.


Assuntos
Constipação Intestinal/dietoterapia , Mangifera/química , Polifenóis/farmacologia , Adolescente , Adulto , Idoso , Biomarcadores/análise , Biomarcadores/sangue , Fibras na Dieta/administração & dosagem , Ácidos Graxos Voláteis/análise , Feminino , Gastrinas/sangue , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Polifenóis/análise
13.
Mol Nutr Food Res ; 62(14): e1800129, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29797702

RESUMO

SCOPE: Mangos are a rich source of gallotannin-derived polyphenols that may exert anti-inflammatory effects relevant to obesity-related chronic diseases. This randomized human clinical study investigated the influence of daily mango supplementation for 6 weeks on inflammation and metabolic functions in lean and obese individuals. METHODS AND RESULTS: Lean (n = 12, body mass index [BMI] 18-26.2 kg m-2 ) and obese (n = 9, BMI >28.9 kg m-2 ) participants, aged 18-65 years received daily 400 g of mango pulp for 6 weeks. Inflammatory cytokines, metabolic hormones, and lipid profiles were examined in plasma before and after 6 weeks. In lean participants, systolic blood pressure was lowered by 4 mmHg after 6 weeks. In obese participants, hemoglobin A1c (HbA1c) and plasminogen activator inhibitor-1 (PAI-1) were reduced by 18% and 20%, respectively. Obese participants showed decreased plasma concentrations (area under the curve [AUC] 0-8h ) of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1). Correlation analysis indicates that the beneficial effects of mango supplementation on pro-inflammatory cytokines, PAI-1 and HbA1c, are associated with systemic exposure to polyphenolic metabolites. CONCLUSIONS: Mango supplementation improves the plasma levels of pro-inflammatory cytokines and metabolic hormones in obese participants. There is a crucial need to investigate the role of lowered polyphenolic absorption in obese individuals on their efficacy in reducing biomarkers for inflammation and other risk factors for chronic diseases.

14.
J Food Sci ; 82(11): 2539-2553, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29030862

RESUMO

Color additives are applied to many food, drug, and cosmetic products. With up to 85% of consumer buying decisions potentially influenced by color, appropriate application of color additives and their safety is critical. Color additives are defined by the U.S. Federal Food, Drug, and Cosmetic Act (FD&C Act) as any dye, pigment, or substance that can impart color to a food, drug, or cosmetic or to the human body. Under current U.S. Food and Drug Administration (FDA) regulations, colors fall into 2 categories as those subject to an FDA certification process and those that are exempt from certification often referred to as "natural" colors by consumers because they are sourced from plants, minerals, and animals. Certified colors have been used for decades in food and beverage products, but consumer interest in natural colors is leading market applications. However, the popularity of natural colors has also opened a door for both unintentional and intentional economic adulteration. Whereas FDA certifications for synthetic dyes and lakes involve strict quality control, natural colors are not evaluated by the FDA and often lack clear definitions and industry accepted quality and safety specifications. A significant risk of adulteration of natural colors exists, ranging from simple misbranding or misuse of the term "natural" on a product label to potentially serious cases of physical, chemical, and/or microbial contamination from raw material sources, improper processing methods, or intentional postproduction adulteration. Consistent industry-wide safety standards are needed to address the manufacturing, processing, application, and international trade of colors from natural sources to ensure quality and safety throughout the supply chain.


Assuntos
Corantes/normas , Aditivos Alimentares/normas , Pigmentos Biológicos/normas , Animais , Comércio , Corantes de Alimentos/normas , Contaminação de Alimentos , Humanos , Legislação de Medicamentos , Legislação sobre Alimentos , Controle de Qualidade , Estados Unidos , United States Food and Drug Administration
15.
Mol Nutr Food Res ; 61(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28568316

RESUMO

SCOPE: The effect of diabetes on the pharmacokinetics, bioavailability and brain distribution of grape polyphenols and select metabolites was studied in the Zucker diabetic fatty (ZDF) rat model. METHODS AND RESULTS: (ZDF) rats and their lean controls (LN) were dosed with a Standardized Grape Polyphenol (SGP) Mixture consisting of grape seed extract, Concord grape juice and resveratrol (RES) by oral gavage for 10 days. An 8-h pharmacokinetic study was performed. After 24 h, a second dose of SGP was administered and 1 h later animals were sacrificed and brain tissue was harvested. Plasma, urine, and brain tissue were analyzed for grape polyphenols. ZDF rats exhibited significantly diminished Cmax for all catechin, epicatechin, quercetin and resveratrol conjugated metabolites. Bioavailability was significantly lower in ZDF rats for methylated flavan-3-ol, RES, and quercetin metabolites. Significantly lower levels of metabolites of RES, quercetin, and flavan-3-ols were found in brains of ZDF rats. There was no significant difference between ZDF and LN in anthocyanins in plasma and no anthocyanins were detectable in brain extracts. ZDF rats showed significantly higher urinary excretion for all polyphenols. CONCLUSION: Diabetes may alter the overall bioavailability of some polyphenols in plasma and brain in part due to higher urinary clearance.


Assuntos
Encéfalo/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Polifenóis/sangue , Polifenóis/farmacocinética , Vitis/química , Animais , Antocianinas/sangue , Antocianinas/farmacocinética , Antocianinas/urina , Disponibilidade Biológica , Glicemia/metabolismo , Encéfalo/metabolismo , Catequina/sangue , Catequina/farmacocinética , Catequina/urina , Diabetes Mellitus Tipo 2/sangue , Flavonoides/sangue , Flavonoides/farmacocinética , Flavonoides/urina , Extrato de Sementes de Uva/sangue , Extrato de Sementes de Uva/farmacocinética , Extrato de Sementes de Uva/urina , Masculino , Polifenóis/urina , Quercetina/sangue , Quercetina/farmacocinética , Quercetina/urina , Ratos , Ratos Zucker , Resveratrol , Estilbenos/sangue , Estilbenos/farmacocinética , Estilbenos/urina , Espectrometria de Massas em Tandem
16.
J Nutr Biochem ; 43: 107-115, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282584

RESUMO

This study investigated the potential role of the p70S6K1/HIF1α axis in the anti-inflammatory activities of pomegranate (Punica granatum L.) polyphenolics in dextran sodium sulfate (DSS)-induced colitis in Sprague-Dawley rats and in lipopolysaccharide (LPS)-treated CCD-18Co colon-myofibroblastic cells. Rats were administered either control (CT) or pomegranate beverage (PG), containing ellagic acid and ellagitannins, then exposed to three cycles of 3% DSS followed by a 2-week recovery period. PG protected against DSS-induced colon inflammation and ulceration (50% and 66.7%, P=.05 and .045, respectively), and decreased the Ki-67 proliferative index in the central and basal regions compared to the control. PG also significantly reduced the expression of proinflammatory cytokines (TNF-α and IL-1ß), COX-2, and iNOS at mRNA and protein levels. In addition, the expression of p70S6K1 and HIF1α was reduced, while the tumor suppressor miR-145 was induced by PG. The intestinal microbiota of rats treated with PG showed a significant increase in Ruminococcaceae that include several butyrate producing bacteria (P=.03). In vitro, PG reduced the expression of p70S6K1 and HIF1α and induced miR-145 in a dose-dependent manner. The involvement of miR-145/p70S6K1 was confirmed by treating LPS-treated CCD-18Co cells with miR-145 antagomiR, where the pomegranate polyphenolics reversed the effects of the antagomiR for p70S6K1 mRNA and protein levels. These results suggest that pomegranate polyphenols attenuated DSS-induced colitis by modulating the miR-145/p70S6K/HIF1α axis, indicating potential use in therapeutic treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa/dietoterapia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lythraceae/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Sucos de Frutas e Vegetais , Microbioma Gastrointestinal/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/metabolismo , Polifenóis/farmacologia , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 70-kDa/genética
17.
Food Funct ; 8(1): 307-314, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28009871

RESUMO

Cocoplum (Chrysobalanus icaco L.) (CP) is an anthocyanin-rich fruit found in tropical areas around the globe. CP polyphenols are associated with beneficial effects on health, including reduction of inflammation and oxidative stress. Due to its functional properties, the consumption of this fruit may be beneficial in the promotion of human health and reduce the risk for chronic diseases. The objective of this study was to assess the anti-inflammatory and anti-proliferative activities of anthocyanins extracted from CP (1.0 to 20.0 µg ml-1 gallic acid equivalents [GAE]) in CCD-18Co non-malignant colonic fibroblasts and HT-29 colorectal adenocarcinoma cells. Tumor necrosis factor alpha (TNF-α, 10 ng mL-1) was used to induce inflammation in CCD-18Co cells. CP anthocyanins were identified and quantified using HPLC-ESI-MSn. The chemical analysis of CP extract identified delphinidin, cyanidin, petunidin and peonidin derivatives as major components. Cell proliferation was suppressed in HT-29 cells at 10.0 and 20.0 µg ml-1 GAE and this was accompanied by increased intracellular ROS production as well as decreased TNF-α, IL-1ß, IL-6, and NF-κB1 expressions at 20.0 µg ml-1 GAE. Within the same concentration range, there was no cytotoxic effect of CP anthocyanins in CCD-18Co cells and TNF-α-induced intracellular ROS-production was decreased by 17.3%. IL-1ß, IL-6 and TNF-α protein expressions were also reduced in TNF-α-treated CCD-18Co cells by CP anthocyanins at 20.0 µg ml-1 GAE. These results suggest that cocoplum anthocyanins possess cancer-cytotoxic and anti-inflammatory activities in both inflamed colon and colon cancer cells.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Chrysobalanaceae/química , Extratos Vegetais/farmacologia , Antocianinas/química , Anti-Inflamatórios/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Mol Carcinog ; 56(1): 197-207, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061150

RESUMO

This study sought to elucidate the mechanisms underlying the anti-inflammatory effect of mango (Mangifera Indica L.) polyphenolics containing gallic acid and gallotanins, and the role of the miR-126/PI3K/AKT/mTOR signaling axis in vitro and in vivo. Polyphenolics extracted from mango (var. Keitt) were investigated in lipopolysaccharide (LPS)-treated CCD-18Co cells. Rats received either a beverage with mango polyphenolics or a control beverage, and were exposed to three cycles of 3% dextran sodium sulfate (DSS) followed by a 2-wk recovery period. The mango extract (10 mg GAE/L) suppressed the protein expression of NF-κB, p-NF-κB, PI3K (p85ß), HIF-1α, p70S6K1, and RPS6 in LPS-treated CCD-18Co cells. LPS reduced miR-126 expression, whereas, the mango extract induced miR-126 expression in a dose-dependent manner. The relationship between miR-126 and its target, PI3K (p85ß), was confirmed by treating cells with miR-126 antagomiR where mango polyphenols reversed the effects of the antagomiR. In vivo, mango beverage protected against DSS-induced colonic inflammation (47%, P = 0.05) and decreased the Ki-67 labeling index in the central and basal regions compared to the control. Mango beverage significantly attenuated the expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and iNOS at the mRNA and protein level. Moreover, the expression of PI3K, AKT, and mTOR was reduced, whereas, miR-126 was upregulated by the mango treatment. These results suggest that mango polyphenols attenuated inflammatory response by modulating the PI3K/AKT/mTOR pathway at least in part through upregulation of miRNA-126 expression both in vitro and in vivo; thus, mango polyphenolics might be relevant as preventive agents in ulcerative colitis. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , MicroRNAs/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Polifenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Linhagem Celular , Colite/imunologia , Colite/patologia , Sucos de Frutas e Vegetais/análise , Humanos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/patologia , Masculino , Mangifera/química , Polifenóis/análise , Polifenóis/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
J Nutr Biochem ; 41: 12-19, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27951515

RESUMO

The objective of this study was to assess the underlying mechanisms of mango polyphenol decreased cell proliferation and tumor volume in ductal carcinoma in situ breast cancer. We hypothesized that mango polyphenols suppress signaling along the AKT/mTOR axis while up-regulating AMPK. To test this hypothesis, mango polyphenols (0.8 mg gallic acid equivalents per day) and pyrogallol (0.2 mg/day) were administered for 4 weeks to mice xenografted with MCF10DCIS.com cells subcutaneously (n=10 per group). Tumor volumes were significantly decreased, both mango and pyrogallol groups displayed greater than 50% decreased volume compared to control. There was a significant reduction of phosphorylated protein levels of IR, IRS1, IGF-1R, and mTOR by mango; while pyrogallol significantly reduced the phosphorylation levels of IR, IRS1, IGF-1R, p70S6K, and ERK. The protein levels of Sestrin2, which is involved in AMPK-signaling, were significantly elevated in both groups. Also, mango significantly elevated AMPK phosphorylation and pyrogallol significantly elevated LKB1 protein levels. In an in vitro model, mango and pyrogallol increased reactive oxygen species (ROS) generation and arrested cells in S phase. In silico modeling indicates that pyrogallol has the potential to bind directly to the allosteric binding site of AMPK, inducing activation. When AMPK expression was down-regulated using siRNA in vitro, pyrogallol reversed the reduced expression of AMPK. This indicates that pyrogallol not only activates AMPK, but also increases constitutive protein expression. These results suggest that mango polyphenols and their major microbial metabolite, pyrogallol, inhibit proliferation of breast cancer cells through ROS-dependent up-regulation of AMPK and down-regulation of the AKT/mTOR pathway.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/dietoterapia , Carcinoma Intraductal não Infiltrante/dietoterapia , Suplementos Nutricionais , Regulação Neoplásica da Expressão Gênica , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Proliferação de Células , Suplementos Nutricionais/análise , Feminino , Humanos , Mangifera , Camundongos Nus , Fosforilação , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Polifenóis/efeitos adversos , Polifenóis/análise , Processamento de Proteína Pós-Traducional , Pirogalol/efeitos adversos , Pirogalol/análise , Pirogalol/uso terapêutico , Interferência de RNA , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nutr Res ; 36(10): 1105-1113, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27865352

RESUMO

The nutritional prevention of aberrant crypt foci by polyphenols may be a crucial step to dietary cancer prevention. The objective of this study was to determine the underlying mechanisms that contribute to the anti-inflammatory and antitumorigenic properties of plum (Prunus salicina L.) polyphenols, including chlorogenic acid and neochlorogenic acid, in azoxymethane (AOM)-treated rats. The hypothesis was that plum polyphenolics suppress AOM-induced aberrant crypt foci formation through alterations in the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and relative micro-RNA expressions. Sprague-Dawley rats (n=10/group) received plum beverage (1346mg gallic acid equivalents/L) or a control beverage ad libitum for 10 weeks with subcutaneous injections of AOM (15mg/kg) at weeks 2 and 3. Results show that the consumption of the plum beverage decreased the number of dysplastic aberrant crypt foci by 48% (P<.05) and lowered proliferation of mucosal cells by 24% (P<.05). The plum beverage decreased the activity of glutathione peroxidase, superoxide dismutase, and catalase in mucosal scrapings, as well as the superoxide dismutase activity in serum. The results were accompanied by a down-regulation of proinflammatory enzymes nuclear factor κB, nitric oxide synthase, cyclooxygenase-2, and vascular cell adhesion molecule 1 messenger RNA. Plum inhibited the expression of AKT and mTOR messenger RNA, phosphorylated AKT, mTOR, and hypoxia-inducible factor-1α protein levels, and the ratio of the phosphorylated/total protein expression of mTOR. Also, the plum beverage increased the expression of miR-143, which is involved in the regulation of AKT. These results suggest that plum polyphenols may exhibit a chemopreventive potential against colon carcinogenesis by impacting the AKT/mTOR pathway and miR-143.


Assuntos
Focos de Criptas Aberrantes/prevenção & controle , Neoplasias do Colo/metabolismo , MicroRNAs/metabolismo , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prunus domestica/química , Serina-Treonina Quinases TOR/metabolismo , Focos de Criptas Aberrantes/induzido quimicamente , Animais , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Azoximetano , Proliferação de Células , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/prevenção & controle , Dieta , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Fosforilação , Extratos Vegetais/farmacologia , Polifenóis/uso terapêutico , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Ácido Quínico/uso terapêutico , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...